Math 131A-3: Homework 6

Due: November 8, 2013

1. Do problems 17.3 (a),(c), 17.10, 17.12, 18.4, 18.7, 18.10, 19.1(a), (c),(f), (g), 19.2(b), 19.4 in Ross.
2. The stars over Babylon. For each rational number $r \in(0,1]$, write $r=\frac{p}{q}$ where $p, q \in \mathbb{N}$ are natural numbers with no common factors. Then consider the following function on $[0,1]$:

$$
f(x)= \begin{cases}\frac{1}{q} & x=\frac{p}{q} \text { is rational } \\ 0 & x \text { is irrational }\end{cases}
$$

We claim that f is discontinuous at every rational number in $(0,1]$ and continuous at every rational.

- To show f is discontinuous at every rational, we first need to show that every interval (a, b) in \mathbb{R} contains an irrational number. (Which hasn't been touched on in lecture, although it may have been mentioned in section.) So we'll do that quickly: first, show that for r rational, $r+\sqrt{2}$ is irrational. Then use the fact that any interval contains a rational to show that every interval contains a number of the form $r+\sqrt{2}$.
- Discontinuity at each rational. Let $x_{0} \in(0,1]$ such that x_{0} is rational. For $n \in \mathbb{N}$, pick x_{n} an irrational in $\left(x_{0}-\frac{1}{n}, x_{0}\right) \cap(0,1]$. Use this sequence to show f is discontinuous at x_{0}.
- Continuity at each irrational. Let $x_{0} \in(0,1]$ such that x_{0} is irrational. Let N be a natural number. Let

$$
\delta_{N}=\min \left\{\left|x_{0}-\frac{i}{n}\right|: 0 \leq i \leq n \leq N, i, n \in \mathbb{N}\right\}
$$

Observe that because $x_{0} \neq \frac{i}{n}$ for any $\frac{i}{n}, \delta_{N}>0$. Prove that for $x \in(0,1]$, if $\left|x-x_{0}\right|<\delta_{N}$, then $\left|f(x)-f\left(x_{0}\right)\right|<\frac{1}{N}$. Conclude that f is continuous at x_{0}.

This example helps demonstrate that our intuition for what continuity should "look like" on a graph is in general insufficiently subtle.

